MEM6804 Modeling and Simulation for Logistics and Supply Chain: Theory \& Analysis

Sino-US Global Logistics Institute
Shanghai Jiao Tong University

Spring 2021 (full-time)

Assignment 1

Due Date: March 24 (in class)

Instruction

(a) You can answer in English or Chinese or both.
(b) Show enough intermediate steps.
(c) Write your answers independently.

Question $1(6+4=10$ points $)$
(1) Prove the result in Buffon's Needle: $\mathbb{P}($ needle crosses a line $)=\frac{2 l}{\pi d}$. (Lec 1 page 24/32)
(2) If the straight needle is bent to V shape, and let X denote the number of intersection points between a needle and the lines, prove that $\mathbb{E}[X]=\frac{2 l}{\pi d}$.

Question $2(6 \times 5=30$ points $)$
Are the following statements true or false for general case? If true, prove it; otherwise, give a counter-example.
(1) If X is independent of Y, Y is independent of Z, then X is independent of Z.
(2) X and Y are two random variables. If X^{2} is independent of Y^{2}, then X is independent of Y.
(3) X and Y are two independent random variables. Let $g(x)$ be a function only of x and $h(y)$ be a function only of y. Then, $g(X)$ is independent of $h(Y)$.
(4) If $\mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]$, then X is independent of Y.
(5) $\rho\left(X, X^{2}\right)$ must be nonzero.

Question 3 (5 points)
Prove that $\operatorname{Var}(X)=\mathbb{E}[\operatorname{Var}(X \mid Y)]+\operatorname{Var}(\mathbb{E}[X \mid Y])$.

Question 4 (10 points)
$Y \sim \operatorname{geometric}(p)$, prove that $\mathbb{E}[X]=1 / p$ and $\operatorname{Var}(X)=(1-p) / p^{2}$. (Do not directly use the property of negative binomial distribution; use the definition.)

Question 5 (10 points)
If $X \sim \operatorname{Poisson}(\lambda)$, prove that $\mathbb{E}[X]=\lambda$ and $\operatorname{Var}(X)=\lambda$.
Question 6 (10 points)
If $X \sim \operatorname{Exp}(\lambda)$, prove that $\mathbb{E}[X]=1 / \lambda$ and $\operatorname{Var}(X)=1 / \lambda^{2}$. (Do not directly use the property of Erlang distribution or Gamma distribution; use the definition.)

Question 7 (10 points)
If $X, Y \sim \operatorname{Exp}(\lambda)$ and they are independent, prove that $X+Y \sim \operatorname{Erlang}(2, \lambda)$. (Do not directly use the property of Erlang distribution or Gamma distribution; use the definition.)

Question 8 (10 points)
If $X \sim \operatorname{Exp}(\lambda)$, prove that $c X \sim \operatorname{Exp}(\lambda / c)$ for $c>0$. (Do not directly use the property of Erlang distribution or Gamma distribution; use the definition.)

Question 9 (5 points)
If $X_{1}, X_{2}, \ldots, X_{n}$ are n independent random variables, and $X_{i} \sim \operatorname{Exp}\left(\lambda_{i}\right), i=1, \ldots, n$, prove that

$$
\min \left\{X_{1}, \ldots, X_{n}\right\} \sim \operatorname{Exp}\left(\lambda_{1}+\cdots+\lambda_{n}\right)
$$

